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Abstract
An analysis of the energy spectrum and magnetization curve of the two-dimensional organic
antiferromagnet F2PNNNO with a spin-one dimerized structure shows that the behavior of the
compound in an external magnetic field can be explained within a lattice boson model with an
extended Pauli exclusion principle, i.e. no more than two bosons per dimer. The unusual
magnetization curve observed experimentally in the compound reflects a sequence of phase
transitions intrinsic for a lattice boson system with strong on-site and inter-site repulsions due to
a tuning of magnon density by the applied magnetic field.

1. Introduction

The possibility of studying Bose–Einstein condensation
(BEC) with low-dimensional magnetic materials predicted
theoretically twenty years ago [1] gave rise to intense
experimental research in the field. The analogy between the
spins and the bosons becomes evident for antiferromagnets
where spins form dimers with a spin-singlet ground state [2].
Originally, the attention was mainly focused on spin-1/2
systems where excitations inside each dimer (triplons) were
regarded as bosons with hard-core repulsion, i.e. no more than
one boson was presented on a single dimer. The analogy
enables the treatment of spin systems as interacting bosons
whose ground state is determined by the balance between
kinetic energy and repulsive interactions [3]. If the repulsion
dominates, the bosons form a superlattice and a finite energy
cost is needed to create an additional particle. This is exhibited
as a jump in the chemical potential versus boson number,
in spin language, as a plateau in the magnetization curve
versus magnetic field at a rational fraction of the saturated
magnetization.

The field induced condensation of magnons has been
experimentally observed in coupled quantum (s = 1/2)
dimer systems based on Cu2+ ions such as TlCuCl3,
BaCuSi2O6 [4–6] and the compound Ba2Cr2O8 [7] which are
adequately described by the BEC theory.

Recently, the magnetic weakly coupled dimer system
Ba3Mn2O8 with S = 1 moments has attracted a lot of
attention [8, 9]. The field behavior of magnetization in the
system of antiferromagnetically weakly coupled S = 1 dimers
can be described as BEC of magnons by mapping the spin-1
system into a gas of semi-hard-core bosons [10]. Considering
the example of a simple two-dimensional (2D) S = 1
isotropic Heisenberg model with a dimerized structure and
frustrating interactions, it was suggested that an emergence of
the spin supersolid state (a long-range mixing of superfluid and
charge-ordered phases) was induced by a magnetic field [11].
The organic compound F2PNNNO is another example of
a spin-one dimer based magnetic insulator. This is a 2D
Heisenberg system with a singlet ground state, in which
S = 1 dimers interact antiferromagnetically [12, 13]. The
lattice of the system is equivalent to the honeycomb one
(figure 1). The field magnetization process shows a two-
step saturation behavior that is a rare example of observing a
plateau in a two-dimensional system. The intermediate plateau
corresponds to the half value of saturation magnetization.
The consistent calculation of susceptibility and magnetization
for the finite-size cluster with imposed periodic conditions
yields the following estimations of antiferromagnetic exchange
couplings, 2J0 = 67.5 K, 2J1 = 7.5 K, i.e. the system can be
regarded as a real 2D dimerized spin-one system.

Apparently, the quantum antiferromagnet F2PNNNO
offers an opportunity to verify the relevance of the semi-
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Figure 1. The 18-site cluster used in numerical calculations. The
environment of the central dimer consists of two ‘fork’-like parts (up
and down), and the left (l) and the right (r) dimers. The intra-dimer
J0 and the inter-dimer J1 interactions are shown by solid and dotted
lines, respectively.

hard-core boson model for the description of a dimerized
system. In this paper, we perform diagonalization of the finite
cluster of N = 18 sites, calculate the magnetization and
demonstrate that these results can be easily understood within
the semi-hard boson model with strong on-site and inter-site
repulsions. The diagonalization procedure we used exploits
the spin rotational symmetry [14, 15]. The implementation of
non-Abelian SU(2) spin symmetry is based on an elimination
of quantum numbers via the Wigner–Eckart theorem. The
advantage of the approach is that the cluster spin states are
decomposed into different sectors of the total cluster spin. In
addition, one can independently handle each of the target spin
states.

The paper is organized as follows. The model and
the diagonalization algorithm are given in section 2. The
truncation procedure is discussed in section 3. In section 4 we
report numerical cluster calculations of the spectrum and the
magnetization curve. The analogy with the lattice boson model
is performed in section 5. The main results are recapitulated in
the conclusion.

2. The model

The Hamiltonian of weakly interacting spin-one dimers on the
2D lattice depicted in figure 1 is given by

HS = J0

∑

i

�Si1 �Si2 + J1

∑

〈iα, j ᾱ〉
�Siα �Sj ᾱ, (1)

where J0 is the coupling inside the i th dimer, J1 is the strength
of the exchange interaction between the dimers located on the
bonds 〈i, j〉. The indices α, ᾱ mark S = 1 spins that enter into
the interacting dimers, namely, ᾱ = 1, 2 provided α = 2, 1,

respectively. Both types of interactions are antiferromagnetic
J0,1 > 0, and the regime of weakly interacting dimers,
|J0| � |J1|, is considered. The Heisenberg model has
been previously suggested to explain some thermodynamical
properties of F2PNNNO [12]. Numerical calculations based
on the Hamiltonian (1) via exact diagonalization of small
clusters and their comparison with experimental data prove its
relevance for the ratio |J1/J0| � 1. The dimerization caused
by the anisotropy of interactions on a lattice is somewhat
analogous to the situation in two-leg spin-1 antiferromagnetic
ladders in a strong antiferromagnetic rung-coupling regime,
when the ladder ground state is well approximated by the
tensor product of singlet rung-dimers [16].

To get the energy spectrum, finite-size clusters composed
of N = 10 and 18 sites are selected. In a choice of the
cluster, care should be taken to ensure that the lattice point
group symmetry holds. Since intra-dimer interactions are
the strongest, the cluster should contain whole dimers and
not break them into parts. To mark sites inside the cluster,
chessboard-like notations will be used, where site positions
along the x axis are marked by numbers whereas positions
along the y axis are denoted by Latin letters.

To find eigenfunctions of the cluster that inherit the
total cluster spin as a quantum number, we should develop
a consecutive procedure for adding spin moments. It is
convenient to break the cluster into several parts. Following the
strategy of building a cluster used in [15], one should identify
the central dimer (center) and its environment. The center is
composed of c3 and d3 sites whereas other sites are embodied
into the environment.

The Hamiltonian of the central dimer has the form Hc =
J0 �Sc3 �Sd3, whereas the interaction between the center and its
environment is given by

Vce = J1 �Sc3(�Sc2 + �Sc4) + J1 �Sd3(�Sd2 + �Sd4). (2)

The environment consists of four parts, namely of two dimers,
left (l) and right (r) ones, with the Hamiltonians

Hl = J0 �Sc1 �Sd1, and Hr = J0 �Sc5 �Sd5, (3)

respectively, as well as two fork-like parts, i.e. the down and
up ones, with the corresponding Hamiltonians

Hdown = J0(�Sb2 �Sc2+�Sa3 �Sb3+�Sb4 �Sc4)+ J1 �Sb3(�Sb2+�Sb4), (4)

Hup = J0(�Sd2 �Se2 + �Se3 �S f 3 + �Sd4 �Se4)+ J1 �Se3(�Se2 + �Se4). (5)

The interaction between the left/right dimers and the fork-like
parts is presented as

Venv = J1(�Sc2 �Sc1 + �Sd2 �Sd1 + �Sc4 �Sc5 + �Sd4 �Sd5). (6)

The Hamiltonian of the entire cluster gathers all the above
terms

H = Hc + Vce + {Hl + Hr + Hdown + Hup + Venv}. (7)

There are three states of dimer, an elementary block of the
cluster, with total spin Sdm = 0 (singlet), Sdm = 1 (triplet),
and Sdm = 2 (quintuplet). The energies of the states are
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E0 = −2J0, E1 = −J0, E2 = J0, respectively, and the
eigenstates are obtained via the common rule of the addition
of moments

|11; SdmMdm〉 ≡ |Sdm Mdm〉
=

∑

σ1σ2

[
1 1 Sdm

σ1 σ2 Mdm

]
|1σ1〉|1σ2〉, (8)

where [· · ·] is the Clebsch–Gordan coefficient. To increase the
size of cluster, reduced matrix elements (RME) of the operators
S(1) and S(2), that constitute the dimer, calculated within the
basis (8), are needed

〈Sdm‖S(1)‖S′
dm〉 = (−1)1+S′

dm

√
(2Sdm + 1)(2S′

dm + 1)

×
{

Sdm 1 S′
dm

1 1 1

}
〈1‖S‖1〉, (9)

〈Sdm‖S(2)‖S′
dm〉 = (−1)1+Sdm

√
(2Sdm + 1)(2S′

dm + 1)

×
{

Sdm 1 S′
dm

1 1 1

}
〈1‖S‖1〉, (10)

where {· · ·} is the 6 j -symbol of the rotational group, and the
reduced matrix element 〈1‖S‖1〉 = √

6.
The fork-like part includes three interacting dimers. It

is convenient to build the basis of this fragment according to
the scheme (2 + 4) + 3 of moment addition, i.e. combining
the ‘prong’ dimer functions is followed by adding the ‘handle’
function. As a result, the basic functions with total spin Sdown

of the down fork-like part have the form

|(S2S4)S24, S3; SdownMdown〉 =
∑

M2 M3 M4 M24

[
S2 S4 S24

M2 M4 M24

]

×
[

S24 S3 Sdown

M24 M3 Mdown

]
|S2 M2〉|S3 M3〉|S4 M4〉, (11)

where S2, S3 and S4 are the spins of dimers composed of the
b2 and c2 sites, etc. Within the basis, the Hamiltonian (4)
is presented by the block diagonal 141 × 141 matrix. The
blocks are marked by total spin Sdown = 0, 1, . . . , 6 values.
A diagonalization of the Hdown matrix yields the spectrum
Eidown Sdown and eigenfunctions

|idownSdownMdown〉
=

∑

S2 S3 S4S24

α
idown Sdown
(S2 S4)S24,S3

|(S2S4)S24, S3; SdownMdown〉,

where the idown index distinguishes basic functions with the
same total Sdown spin. The results for the upper fork-like part
can be obtained the same way provided the site c4 is substituted
for d2, and c2 is changed for d4 etc. The assembly of the
cluster part is completed by calculations of the reduced matrix
elements (see equation (A.1) in appendix A).

In the next step, we construct spin functions of the non-
interacting parts, i.e. of the left and of the right dimers

|SlSr; Slr Mlr〉 =
∑

Ml Mr

[
Sl Sr Slr

Ml Mr Mlr

]
|Sl Ml〉|Sr Mr〉, (12)

where Slr = 0, 1 . . . , 4, and upper and lower fork-like parts

|iupSupidownSdown; Sud Mud〉 =
∑

Mup Mdown

[
Sup Sdown Sud

Mup Mdown Mud

]

× |iupSup Mup〉|idownSdownMdown〉, (13)

where Sud = 0, 1 . . . , 12, and add them together to build the
basis of environment for the central dimer

|(iupSupidownSdown)Sud, (Sl Sr)Slr; Senv Menv〉
=

∑

Mud Mlr

[
Sud Slr Senv

Mud Mlr Menv

]
|iupSupidownSdown; SudMud〉

× |SlSr; Slr Mlr〉. (14)

The reduced matrix elements of spin operators required
to build the Hamiltonian of the environment are shown in
appendix A (see equations (A.2)–(A.5)). Note, that the number
of states (14) is too great to avoid the truncation procedure (see
section 3).

The matrix elements of the environment Hamiltonian
Henv = Hl + Hr + Hdown + Hup + Venv are listed below

〈(iupSupidownSdown)Sud, (Sl Sr)Slr; SenvMenv|Henv

× |(i ′
upS′

upi ′
downS′

down)S′
ud, (S′

l S′
r)S′

lr; S′
envM ′

env〉
= (Eiup Sup + Eidown Sdown + ESl + ESr)δiup,i ′

up
δSup,S′

up
δidown,i ′

down

× δSdown,S′
down

δSud,S′
ud
δSl,S′

l
δSr,S′

r
δSlr,S′

lr
δSenv,S′

env
δMenv,M ′

env

+ J1δSenv,S′
env

(−1)Senv+S′
ud+Slr

{
Sud Slr Senv

S′
lr S′

ud 1

}
δMenv,M ′

env

× {〈SlSr; Slr‖Sc1‖S′
l S′

r; S′
lr〉〈iupSupidownSdown; Sud‖Sc2

× ‖i ′
upS′

upi ′
downS′

down; S′
ud〉

+ 〈Sl Sr; Slr‖Sd1‖S′
l S′

r; S′
lr〉〈iupSupidownSdown; Sud‖Sd2

× ‖i ′
upS′

upi ′
downS′

down; S′
ud〉

+ 〈Sl Sr; Slr‖Sc5‖S′
l S

′
r; S′

lr〉〈iupSupidownSdown; Sud‖Sc4

× ‖i ′
upS′

upi ′
downS′

down; S′
ud〉

+ 〈Sl Sr; Slr‖Sd5‖S′
l S′

r; S′
lr〉〈iupSupidownSdown; Sud‖Sd4

× ‖i ′
upS′

upi ′
downS′

down; S′
ud〉}. (15)

The terms in {· · ·} include the product of the reduced
matrix elements given by equations (A.2) and (A.3) for spins
that enter into the left/right dimers and by equations (A.4)
and (A.5) for the constituents of the fork-like parts.

After finding the environment eigenvalues Eienv Senv and
eigenfunctions

|ienvSenv Menv〉 =
∑

β
ienv Senv
(iup Supidown Sdown)Sud,(Sl Sr)Slr

× |(iupSupidownSdown)Sud, (Sl Sr)Slr; Senv Menv〉, (16)

one calculates reduced matrix elements for the environment
spins that directly interact with the central dimer, within the
basis (see equation (A.6)).

As the final step of the diagonalization procedure one
builds the basis of the entire cluster

|ienvSenv, Sc; SM〉 =
∑

Menv Mc

[
Senv Sc S
Menv Mc M

]

× |ienvSenv Menv〉|Sc Mc〉,
and determines the matrix elements of the cluster Hamilto-
nian (7)

〈ienvSenv, Sc; SM|H |i ′
envS′

env, S′
c; S′M ′〉 = (Eienv Senv + ESc)

× δienv,i ′
env

δSenv,S′
env

δSc,S′
c
δS,S′δM,M ′

+ J1(−1)S+S′
env+Sc

{
Senv Sc S
S′

c S′
env 1

}
δS,S′δM,M ′

3
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×
[
〈Sc‖S(1)‖S′

c〉
∑

k=c2,c4

〈ienvSenv‖Sk‖i ′
envS′

env〉

+ 〈Sc‖S(2)‖S′
c〉

∑

k=d2,d4

〈ienvSenv‖Sk‖i ′
envS′

env〉
]
, (17)

where RMEs are previously derived (see equations (9), (10)
and (A.6)). Numerical diagonalization of the matrix (17) yields
the target spectrum Ei S and eigenfunctions

|i SM〉 =
∑

γ i S
Senv Menv ,Sc

|SenvMenv, Sc; SM〉. (18)

3. The truncation procedure

The classification of eigenstates of the parts we used to gather
the total cluster according to irreducible representations of the
SU(2)-group enables us to organize the truncation procedure
inside sectors of Hilbert space that arise at consecutive steps of
the algorithm. A possibility to carry out calculations within a
reduced basis is a feature of the algorithm that relates it with
other renormalization group methods.

We hold the following strategy of the truncation procedure
to build target states that are obtained after combining two parts
of the lattice. For a given spin-S sector a certain amount of
states having the lowest energies are kept. Thus each group of
|i S〉 states is presented in a reduced basis. We truncate the basis
of two ‘fork’-like parts before combining them into a larger
lattice segment. This is not the only way to do so, for example
one can truncate the basis of the environment after combining
the ‘fork’-like parts, but the former is easier to perform.

We tested several realizations of the truncation procedure,
either by simply controlling a number of vectors retained in the
reduced basis, or by monitoring a genealogy of the target spin-
S state through the triangle rule, i.e. only states that contribute
to the target state are taken into account. The last approach
gives an opportunity to keep more vectors in the basis due
to omitting of redundant states. Moreover, the highest-spin
cluster states, i.e. those with S � 15 in our problem, are treated
exactly. The size of the truncated basis was chosen equal to
either 64 or 121 for the scheme without taking genealogy of the
target state into account, and it varies from 12 up to 352, being
dependent on the total spin S, for the ‘genealogical’ scheme.

The accuracy of the truncation procedure is controlled by
monitoring the energy of the lowest state within each spin
sector. The variation of this observable, computed through both
the schemes, does not normally exceed 1–2% (a maximum
discrepancy of the order 6% is reached only in the S-8 sector);
this provides evidence for the correctness of the constructed
basis, which exhibits almost no dependence on the used
truncation procedure. The results that we present below are
obtained within the ‘genealogical’ scheme.

Another feature of the algorithm is combining the central
unit (one site or dimer) with its environment at the final
step. The procedure does not depend on the structure of the
environment and looks similar for any cluster. However, the
information about quantum numbers of the environment states
enables us to simplify the calculations substantially at this
stage of the algorithm. Indeed, for a given spin-S sector of
the Hilbert space of the entire cluster, one should pick out only

Table 1. Numerical results of the lowest energy Emin and the energy
ε̃ per dimer in the spin-S subspaces for N = 10 and 18 clusters.

S
Emin

(N = 10)/J0

ε̃
(N = 10)

Emin

(N = 18)/J0

ε̃
(N = 18)

0 −10.0334 −2.0067 −18.0336 −2.0037
1 −9.1853 −1.8371 −17.1431 −1.9048
2 −8.2123 −1.6425 −16.2529 −1.8059
3 −7.1978 −1.4396 −15.2935 −1.6993
4 −6.1430 −1.2286 −14.3205 −1.5912
5 −4.9344 −0.9869 −13.3164 −1.4796
6 −2.9787 −0.5957 −12.2745 −1.3638
7 −0.9610 −0.1922 −11.1879 −1.2431
8 1.0849 0.2170 −10.0260 −1.1140
9 3.1588 0.6318 −8.8335 −0.9815

10 5.4418 1.0883 −6.8807 −0.7645
11 −4.8994 −0.5444
12 −2.8795 −0.3199
13 −0.8172 −0.0908
14 1.2815 0.1424
15 3.4533 0.3837
16 5.6844 0.6316
17 7.960 0.8844
18 10.3254 1.1473

those environment eigenfunctions for which the spins Su obey
the rule

|Su − Sc| � S � Su + Sc.

Using the truncation procedure results in bases composed
from a maximum of 4–5 thousand states. To control the
accuracy of the procedure, results obtained for the 18-site
system are compared with those for the 10-site system. The
smaller cluster enables us to handle the complete basis without
any truncation. The 10-site system is embedded into a bigger
cluster and consists of the following parts: the central dimer
c3, d3 and neighbor dimers b2, c2, b4, c4, d2, e2 and d4, e4.
Apparently, the construction of the environment requires two
consecutive steps (i) addition of dimers b2, c2 and b4, c4 as
well as d2, e2 and d4, e4 ones according to equation (12),
followed by calculation of the reduced matrix elements
according to equation ((A.2) and (A.3)); (ii) construction of
the environment states from the upper and lower parts built
previously and the calculation of the RME of the environment
spins that interact directly with the central dimer. The entire
cluster Hamiltonian is obtained through (17). The biggest
Hilbert space dimension (2025 × 2025) is reached in the
S-2 sector. Numerical results for the supplementary cluster
are listed in table 1 for comparison. Note that one should
compare energy values with the same magnetization per dimer
(see figure 2).

4. The energy spectrum and magnetization curve

The results of the energy spectrum calculation for two N = 10
and 18 clusters are listed in table 1, where the minimal energy
Emin within each spin-S sector along with energy per dimer
ε̃ = 2Emin/N are given. The magnetization per dimer is
determined by m = 2S/N . Both N = 10 and 18 dependences
ε̃(m) are shown together in figure 2. Points for both clusters lay
on the same curve, i.e. finite-size effects can be ignored, which

4
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Figure 2. Plot of the lowest energy per dimer ε̃ (m) versus m for the
N = 10 and 18 clusters. The cusp is seen at m = 1.

Figure 3. Plot of the changes �Emin versus the dimer magnetization
m. A distinct jump is seen at m = 1.

is expected for the regime of a small dimer–dimer interaction
J1 � J0.

A remarkable feature of the curve is the cusp in the middle,
i.e. at m = 1. Independent fitting of both parts by the
quadratic form ε(m) = ε2m2 + ε1m + ε0 jointed in the point
yields ε2 = 0.190 ± 0.018, ε1 = 0.828 ± 0.019, and ε0 =
−2.0073 ± 0.0040 for lower part of the curve (0 < m < 1)
together with ε2 = 0.200 ± 0.058, ε1 = 1.4578 ± 0.018, and
ε0 = −2.629 ± 0.014 for upper part (1 < m < 2).

Based on N = 18 case data we build a dependence of
jumps Emin when the total spin S changes from 0 up to 18, or
the dimer magnetization varies from 0 up to 2 (figure 3). One
can see that the values of jumps are approximately J0 for S � 9
and they increase by a factor of 2 as S � 10. It means that the
energy of the total system of weakly interacting dimers changes
with an increase of magnetic field, due to local excitations
inside separate dimers. Indeed, for the single S = 1 dimer
the spectrum consists of a singlet, a triplet, and a quintuplet.
The energy difference between the singlet and the triplet is J0,
while the difference between the quintuplet and the triplet is
2J0 (see the discussion in section 5).

A standard way to describe the magnetization process at
T = 0 is to define E (S)

min(N) as the lowest energy of the

Figure 4. Plot of m versus B obtained via B = ε′(m). The dots mark
values found through the diagonalization algorithm.

Hamiltonian (1) in the spin-S subspace for the finite system
of N elementary dimers. Applying a magnetic field B leads
to the Zeeman splitting of the energy levels E (S)

min(B) =
E (S)

min − SB , and therefore, the level crossing occurs at values
BS = E (S+1)

min (B) − E (S)
min(B) when the field is increased.

These level crossings correspond to jumps of value 1/N in
magnetization at zero temperature, until the fully polarized
state with magnetization per dimer msat = 2N/N = 2 is
reached at a value of the magnetic field Bsat = E (2N)

min (B) −
E (2N−1)

min (B). The calculation performed for N/2 = 9 dimers
yields the magnetization points presented in figure 4 and
reveals the appearance of the ground state plateau as well as
the plateau at one-half of the saturation value.

To guarantee the validity of the magnetization curve we
use the approach developed by Sakai and Takahashi [17] to
recover the m(B) dependence in the thermodynamic limit. In
this case the condition for crossover fields transforms into B =
ε′(m), where ε is the energy per dimer. The plateau boundaries
are determined by the derivatives at the special points: (i) B1 =
ε′(+0) is related with the end of the ground state plateau; (ii)
B2 = ε′(1−0) and B3 = ε′(1+0) correspond to the beginning
and the end of intermediate plateau, respectively; (iii) B4 =
ε′(2 − 0) marks an emergence of saturation magnetization.

Treating the energy spectrum results in linear dependences
relevant to the sectors between plateaus

{
ε′(m) = 0.83 + 0.38m, 0 < m < 1,

ε′(m) = 1.46 + 0.40m, 1 < m < 2,
(19)

that yields immediately B1 = 0.83J0, B2 = 1.21J0,
B3 = 1.86J0, and B4 = 2.26J0. Values normalized to
the saturation field Bsat are listed in table 2 and exhibit
a reasonable agreement with the experimental data for the
F2PNNNO system. A comparison of finite cluster calculations
with those of the thermodynamic limit (19) is given in figure 4.
One can see that both methods come to close results.

Note that the method we used for numerical calculations
is intrinsically a two-dimensional one, whereas the previous
numerical study of the system [12] dealt with an essentially
one-dimensional ‘folded chain’ cluster. The regions between
the plateaus of the magnetization curve exhibit a behavior
closer to a linear one instead of the S-shape forms obtained
earlier.

5



J. Phys.: Condens. Matter 22 (2010) 036001 I G Bostrem et al

Table 2. Values of the magnetic field special points compared with
the experimental data.

Bi/Bsat i = 1 i = 2 i = 3 i = 4

Theory 0.37 0.53 0.82 1
Experiment [12] 0.33 0.53 0.89 1

5. The semi-hard-core boson model

Here we introduce the boson picture based on data presented
in figure 3. For J1 � J0 the low energy subspace of the
spin Hamiltonian (1) consists of the singlet, the Sz = 1
component of the triplet, and the Sz = 2 component of the
quintuplet. It is convenient to identify the triplet state with
the presence of a bosonic particle (triplon), the quintuplet state
as a pair of bosons (quintuplon), and the singlet state as an
absence of bosons. Then, the boson model is formulated
via the semi-hard-core bosonic operators gi and g†

i with the
extended Pauli exclusion principle g†3

i = 0, i.e. more than two
bosons per site are forbidden. Note that this principle may be
realized via parafermion language, but its description requires
a transmutation of statistics that complicates calculations in a
2D case (see appendix B). The algebra of the operators is
[gi, gi ] = [g†

i , g†
i ] = 0, and [gi , g†

i ] = δi j(1 − Fi ), where
Fi = (3/2)ni (ni − 1) is deformation of the canonical boson
algebra, ni = g†

i gi is the number operator [10].
The boson Hamiltonian in terms of these operators is

written as

H = 1
2

∑

〈i j〉
(g†

i g j + g†
j gi)(h1 + h2 + h3) − μ

∑

i

ni

+ U

2

∑

i

ni(ni + 1) + V
∑

〈i j〉
(ni − 1)(n j − 1), (20)

where the hopping terms

h1 = t1(ni j − 2)(ni j − 3), h2 = 2t2(ni j − 1)(3 − ni j ),

h1 = t3(ni j − 1)(ni j − 2)

depend on the number of particles ni j = ni + n j on the bonds
i, j .

The map between the bosonic (20) and the spin
Hamiltonian (1) is reached through representation [11] (see
figure 5)

ni = Sz
i = Sz

i1 + Sz
i2,

where (1, 2) marks two spins on each dimer, and

g†
i = 1√

2
(S†

i2 − S†
i1)

[ √
3

2
√

2
+

(
1 −

√
3

2
√

2

)
Sz

i

]
.

This establishes the relationship between the spin and the
bosonic parameters U = J0, V = J1/2, μ = B − 4J1,
and ti = − 8

√
2

3
√

3
ai J1, where a =

√
3

2
√

2
(i = 1, 2, 3). Thus,

the bosonic model includes a strong on-site boson repulsion U
as well as a noticeable repulsive inter-site interaction V . The
magnetic field B plays the role of the chemical potential μ.

Figure 5. The low energy subspace of the single dimer spectrum in
the presence of a magnetic field. Boson superlattice patterns
corresponding to the charge-ordered and Mott insulating phases are
shown above.

The boson Hamiltonian (20) constitutes a low energy
effective model of the spin Hamiltonian (1) that emerges from
restricting HS to the subspace of the semi-hard-core bosonic
operators. The map is valid in the limit J1 � J0, or in the
boson language ti/U , V/U � 1, when the main physics
is governed by a competition between one-site repulsion and
chemical potential.

The quantum phase diagram of the boson Hamilto-
nian (20) was built in [11] by using the stochastic series ex-
pansion quantum Monte Carlo method (see their figure 4). It
has been found that a Bose condensate fraction appears in the
regions of the chemical potential (magnetic field) between the
plateaus of the g-particles density (magnetization curve). In
contrast, the charge density wave (Ising-like charge order (CO)
phase) forms around the intermediate plateau. There are re-
gions, where a supersolid phase, a mixing of the charge or-
der and the Bose-superfluid (BS), emerges. According to this
study, the magnetization curve shown in figure 4 can be inter-
preted as tuning of boson density by an applied magnetic field.
At a small chemical potential, the lowest energy is achieved
by empty states, i.e. those where all dimers are in the singlet
state (boson vacuum). For B > B1 a finite density of bosons
(triplons) emerges in the ground state and contributes to the BS
phase. The triplon excitations are mobile due to weak inter-
dimer coupling. The density (magnetization) increases mono-
tonically as a function of magnetic field until B2, where a tran-
sition to the CO-phase occurs. This corresponds to the boson
concentration n = 0.5, when the triplons crystallize in a su-
perstructure pattern (figure 5). The fractional plateau requires
strong boson interactions in comparison to the kinetic energy.
At B > B3 the filling increases monotonically in the result-
ing BS phase (quintuplon condensation) until the ground state
transforms into a Mott insulating (MI) phase with two bosons
per dimer at B > B4. The boson concentration in the MI phase
is n = 1. The reasonings are easily reproduced if one analyzes
the boson Hamiltonian (20) by neglecting the inter-site terms.
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6. Conclusions

Quantum dimer antiferromagnetic systems are a good field
for studying the BEC of interacting particles. Along with
ultracold atomic gases in optical lattices [18, 19] they offer an
opportunity to observe transitions predicted by lattice boson
models. In many cases, the boson picture is more transparent
physically than the original spin language. Based on the
analysis of the finite cluster energy spectrum for the two-
dimensional spin-1 organic antiferromagnet F2PNNNO with
dimerized structure, we prove the relevance of semi-hard-core
bosons with pronounced on-site and inter-site repulsions for
a low-dimensional spin system. The unusual magnetization
curve observed in F2PNNNO is nothing but a manifestation of
the fine tuning of the density of bosons by an applied magnetic
field, when a low-density Bose-superfluid, charge ordering
with one boson per dimer, and a high-density Bose-superfluid
phases change each other subsequently with field increases.
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Appendix A

The reduced matrix elements for spins on c2 and c4 sites
computed in the basis of eigenfunctions of the Hamiltonian
Hdown are given by the 141 × 141 matrix

〈idownSdown‖Sc2(c4)‖i ′
downS′

down〉
=

∑

S2 S3 S4S24

∑

S′
2 S′

3 S′
4 S′

24

α
idown Sdown
(S2S4)S24,S3

α
i ′
down S′

down

(S′
2 S′

4)S′
24,S

′
3

× 〈(S2S4)S24, S3; Sdown‖Sc2(c4)‖(S′
2S′

4)S′
24, S′

3; S′
down〉.

(A.1)

The reduced matrix elements that enter into the expression
are calculated according to the rules

〈(S2S4)S24, S3; Sdown‖Sc2‖(S′
2S′

4)S′
24, S′

3; S′
down〉

= (−1)S2+S4+S3+S24+S′
24+S′

down[S24, S′
24, Sdown, S′

down]1/2

×
{

S24 1 S′
24

S′
2 S4 S2

}{
Sdown 1 S′

down
S′

24 S3 S24

}

× 〈11; S2‖S(2)‖11; S′
2〉δS4 S′

4
δS3S′

3
,

〈(S2S4)S24, S3; Sdown‖Sc4‖(S′
2S′

4)S′
24, S′

3; S′
down〉

= (−1)S2+S′
4+S3+2S24+S′

down[S24, S′
24, Sdown, S′

down]1/2

×
{

S24 1 S′
24

S′
4 S2 S4

}{
Sdown 1 S′

down
S′

24 S3 S24

}

× 〈11; S4‖S(2)‖11; S′
4〉δS2 S′

2
δS3S′

3
,

where [S] = (2S + 1).
The reduced matrix elements for spins on the sites c1 (d1)

are given by the 19 × 19 matrix built in the basis of functions,

which are constructed from the ‘left’ and the ‘right’ dimers
equation (12)

〈Sl Sr; Slr‖Sc1(d1)‖S′
l S

′
r; S′

lr〉
=

√
(2Slr + 1)(2S′

lr + 1)(−1)1+Sl+Sr+S′
lr

×
{

Slr 1 S′
lr

S′
l Sr Sl

}
〈11; Sl‖S(1(2))‖11; S′

l 〉δSr S′
r
. (A.2)

The RME for spins on the c5 (d5) sites are calculated as
follows:

〈Sl Sr; Slr‖Sc5(d5)‖S′
l S

′
r; S′

lr〉
=

√
(2Slr + 1)(2S′

lr + 1)(−1)1+Sl+S′
r+Slr

×
{

Slr 1 S′
lr

S′
r Sl Sr

}
〈11; Sr‖S(1(2))‖11; S′

r〉δSl S′
l
. (A.3)

The reduced matrix elements of spin operators on sites
c2(d2), c4(d4) calculated on the eigenfunctions of the up and
down parts form the 73 789 × 73 789 matrices.

〈iupSupidownSdown; Sud‖Sc2(c4)‖i ′
upS′

upi ′
downS′

down; S′
ud〉

=
√

(2Sud + 1)(2S′
ud + 1)(−1)1+Sup+S′

down+Sud

×
{

Sud 1 S′
ud

S′
down Sup Sdown

}
〈idownSdown‖Sc2(c4)

× ‖i ′
downS′

down〉δiupi ′
up
δSup S′

up
. (A.4)

〈iupSupidownSdown; Sud‖Sd2(d4)‖i ′
upS′

upi ′
downS′

down; S′
ud〉

=
√

(2Sud + 1)(2S′
ud + 1)(−1)1+Sup+Sdown+S′

ud

×
{

Sud 1 S′
ud

S′
up Sdown Sup

}
〈iupSup‖Sd2(d4)

× ‖i ′
upS′

up〉δidowni ′
down

δSdown S′
down

. (A.5)

The reduced matrix elements of the spin operators on
sites c2(d2), c4(d4) are calculated on eigenfunctions of the
environment. The dimension of these matrices is determined
by the dimension of the truncated basis of the environment

〈ienvSenv‖Sk‖i ′
envS′

env〉 =
∑

β
ienv Senv
(iup Supidown Sdown)Sud,(Sl Sr)Slr

× β
i ′
env S′

env

(i ′
up S′

upi ′
down S′

down)S′
ud,(S′

l S′
r)S′

lr

× 〈(iupSupidownSdown)Sud, (Sl Sr)Slr; Senv‖Sk

× ‖(i ′
upS′

upi ′
downS′

down)S′
ud, (S′

l S
′
r)S′

lr; S′
env〉, (A.6)

where k = c2(d2), c4(d4) and

〈(iupSupidownSdown)Sud, (Sl Sr)Slr; Senv‖Sk

× ‖(i ′
upS′

upi ′
downS′

down)S′
ud, (S′

l S
′
r)S′

lr; S′
env〉

= √
(2Senv + 1)(2S′

env + 1)

× (−1)1+Sud+Slr+S′
env

{
Senv 1 S′

env
S′

ud Slr Sud

}

× 〈iupSupidownSdown; Sud‖Sk‖i ′
upS′

upi ′
downS′

down; S′
ud〉

× δSlS′
l
δSr S′

r
δSlr S′

lr
. (A.7)

Appendix B

Quantum statistics is based on two principles. The first one
is exchange statistics, when a permutation of two identical
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particles causes an appearance of a phase factor in the total
wave function. The second one is exclusion statistics, which
reflects an ability to accommodate p particles in the same
single-particle quantum state. Whereas the first concept
depends on the space dimensionality of the system, the second
one does not [20].

The exclusion statistics algebra obeying the generalized
Pauli exclusion principle can be formulated in terms of the
bond g operators that have been used in the main text. Another
variant of the exclusion statistics can be realized, for example,
via Green’s parafermion statistics [21, 22]. According to
common formalism based on Burnside’s theorem of group
theory (see [10] for details), both algebraic approaches are
related to each other.

Indeed, let us introduce two modes (α = 1, 2) for each i th
bond

{dα
i , dα

j } = {(dα
i )†, (dα

j )
†} = 0, {dα

i , (dα
j )

†} = δi j

(B.1)
with the condition dα

j |vacuum〉 = 0. For α �= β the modes
satisfy non-standard relations

[dα
i , dβ

j ] = [(dα
i )†, (dβ

j )
†] = 0, [dα

i , (dβ

j )
†] = 0.

(B.2)
Parafermion creation and annihilation operators are

determined as

d†
j = (d1

j )
† + (d2

j )
†, d j = d1

j + d2
j . (B.3)

They satisfy commutation relations

[[d†
i , d j ], dl] = −2δild j , [[di, d j ], dl] = 0. (B.4)

The parafermion number operator nd
j = (d1

j )
†d1

j +(d2
j )

†d2
j

can be written as

nd
j = 1

2 ([d†
i , d j ] + 2), (B.5)

and obeys the commutation rule

[nd
j , d†

j ] = δi j d
†
j . (B.6)

From the property (nα
j )

2 = nα
j one can conclude that nd

j
varies from 0 to 2. Moreover,

(d†
j )

2 = 2(d1
i )†(d2

i )
†, (B.7)

that means (d†
j )

3 = 0. Therefore, the parafermion
representation provides the extended Pauli exclusion principle.

To establish a connection between the bond g-algebra and
the parafermion statistics, we note that the local Hilbert space
related with a bond has the dimension D = 3. Therefore, one
can map the g-particles onto the algebra of S-1 operators

S+
i = √

2g†
i

[
1 +

(
1√
2

− 1

)
ng

i

]
,

S−
i = √

2

[
1 +

(
1√
2

− 1

)
ng

i

]
gi, Sz

i = ng
i − 1.

(B.8)

These spin operators are connected with two-flavor hard-
core bosons via the generalization of the Jordan–Wigner
transformation [23, 24]

S+
i = √

2(b†
i1 + bi2), S−

i = √
2(bi1 + b†

i2),

Sz
i = b†

i1bi1 − b†
i2bi2

(B.9)

with the imposed constraint b†
i1bi1 + b†

i2bi2 = 1, and the spin
state Sz = 0 is taken as a vacuum. The commutation relations
for the hard bosons are

[biα, biβ] = [b†
iα, b†

iβ] = 0,

[biα, b†
iβ] = δi jδαβ(1 − nb

iα), [nb
iα, b†

jβ] = δi jδαβb†
iα,

(B.10)
where nb

iα = b†
iαbiα (α = 1, 2) is the number operator for the

hard bosons.
A transition from the hard-core bosons to the parafermions

is related with a transmutation of statistics. In the
two-dimensional case, the change of statistics is based
on a generalization of the conventional Jordan–Wigner
transformation [25, 26]. In the following, for simplicity, we
will illustrate the connection on an example of dimerized one-
dimensional S-1 chain.

The parafermion modes are converted into the canonical
two-flavor canonical fermions ciα (α = 1, 2) determined
on the i th bond of the chain through the partial non-local
transmutators

(d1
i )

† = c†
i1 exp

[
iπ

∑

j<i

n j2

]
,

(d2
i )

† = c†
i2 exp

[
iπ

(∑

j<i

n j1 + ni1

)]
,

(B.11)

where

{ciα, c jβ} = {c†
iα, c†

jβ} = 0, {ciα, c†
jβ} = δi jδαβ ,

(B.12)
and niα = c†

iαciα is the number operator for the fermions.
A map between the hard-core bosons and the two-flavor

fermions is established by the total non-local transmutators

b†
i1 = c†

i1 exp

[
iπ

∑

j<i

(c†
j1c j1 + c†

j2c j2)

]
,

b†
i2 = c†

i2 exp

[
iπ

∑

j<i

(c†
j1c j1 + c†

j2c j2)

]
eiπc†

j 1c j 1.

(B.13)

Relations (B.8), (B.9), (B.11), (B.13) provide the mapping
between the parafermions and the g-particles.
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